Clustering Data Set with Categorical Feature Using Multi Objective Genetic Algorithm

Dipankar Dutta
Department of Computer Science and Information Technology,
University Institute of Technology,
The University of Burdwan,
Golapbug (North), Burdwan,
West Bengal, India
PIN-713104
Email:dipankar_dutta@rediffmail.com

Paramartha Dutta
Department of Computer and System Sciences,
Visva-Bharati University,
Santiniketan, West Bengal, India
PIN-731235
Email:paramartha.dutta@gmail.com

Jaya Sil
Department of Computer Science and Technology,
Bengal Engineering and Science University,
Shibpur, West Bengal, India
PIN-711103
Email:js@cs.becs.ac.in

Abstract—In the paper, real coded multi objective genetic algorithm based K-clustering method has been studied where K represents the number of clusters known apriori. The searching power of Genetic Algorithm (GA) is exploited to search for suitable clusters and cluster modes so that intra-cluster distance (Homogeneity, \(H\)) and inter-cluster distances (Separation, \(S\)) are simultaneously optimized. It is achieved by measuring \(H\) and \(S\) using Mod distance per feature metric, suitable for categorical features (attributes). We have selected 3 benchmark data sets from UCI Machine Learning Repository containing categorical features only. Here, K-modes is hybridized with GA to combine global searching capabilities of GA with local searching capabilities of K-modes. Considering context sensitivity, we have used a special crossover operator called “pairwise crossover” and “substitution”.

I. INTRODUCTION

Data mining is an interdisciplinary field of research applied to extract high level knowledge from real-world data sets [14]. Clustering happens to be one of the important data mining task.

Clustering is an unsupervised learning process where class labels are not available at the training phase.

GA is “search algorithms based on the dynamics of natural selection and natural genetics” [17]. Categories of GAs are - simple GA (SGA) and multi objective GA (MOGA). When an optimization problem involves only one objective, the task of finding the best solution is a single objective optimization problem. However, in the real world, life appears to be quite complex. Most of the problems are consisting of more than one interdependent objective, which are to be minimized or maximized simultaneously. These types of problems are multi objective optimization problem [6]. The use of GAs in clustering is an attempt to exploit effectively the large search space usually associated with cluster analysis and better interactions among the features to form chromosomes.

Clustering is to primarily identification of natural groups within a data set. Instances in the same groups are more similar compared with instances in different groups [22], [30], [32]. From optimization viewpoint, clustering is a non-deterministic polynomial-time hard (NP-hard) grouping problem [12]. Evolutionary algorithms like GAs are metaheuristics widely believed to be effective on NP-hard problems, being able to provide near-optimal solutions to such problems in reasonable time. Although GAs have been used in data clustering problems, most of them are single objective in nature. Naturally, this is hardly equally applicable to all kinds of data sets. So to solve many real world problems like clustering, it is necessary to optimize more than one objective simultaneously by MOGA. As the relative importance of different clustering criteria are unknown, it is better to optimize Homogeneity \((H)\) and Separation \((S)\) separately rather than combining them into a single measure to be optimized. Objects within the same clusters are similar implying low intra-cluster distances \((H)\) and at the same time, objects belonging to different clusters are dissimilar, thereby inducing high inter-cluster distances \((S)\).

In the paper, clustering is considered as an intrinsically multi objective optimization problem [22] by involving homogeneity and separation together. However, choosing optimization criterion is one of the fundamental dilemmas in clustering [33].

This paper is organized as follows. Section II reports previous relevant works. Section III clarifies definitions pertaining to the problem. Section IV describes the proposed approach for solving the problem. In section V, testing are carried out on some popular benchmark data sets. Finally, section VI summarizes the work with concluding remarks.

II. PREVIOUS WORK

Clustering is one of the most studied areas of data mining research. Extensive surveys of the clustering problems and algorithms are presented in [15], [19], [26], [30], [46]. With the growing popularity of soft computing methods, researchers of late extensively use intelligent approaches in cluster analysis of data sets.

The methods are broadly categorized as (i) Partitioning methods, (ii) Hierarchical methods, (iii) Density-based meth-

Among these partitioning methods and GA based methods are relevant here.

Partitioning methods: Data sets are divided among K many partitions or clusters where \(K \leq m \), and \(m \) is the number of objects or tuples in the data sets. In this category, most popular methods are K-means [37], [38], fuzzy C-means (FCM) [3], K-modes [27], [28], fuzzy K-modes [29] and K-medoids [32]. Among these K-means and FCM cannot be applied in categorical domains. K-modes and fuzzy K-modes are popular methods in this domain.

Clustering by Genetic Algorithms: Initially GAs were used to deal with single objective optimization problems such as minimizing or maximizing a variable of a function. Such GAs is simple GA (SGA). David Schaffer proposed vector evaluated genetic algorithm [50], which was the first inspiration towards MOGA. Several improvements on the vector evaluated genetic algorithm are proposed in [17]. Vector evaluated genetic algorithm dealt with multivariate single objective optimization. V. Pareto suggested Pareto approach [45] to cope with multi-objective optimization problems. In this work, chromosomes lying on the Pareto optimal front (dominant chromosomes) are selected by MOGA, providing near optimal solutions for clustering. According to the dominance relation between two candidate chromosomes, a candidate clustering chromosome \(Ch_1 \) dominates another candidate clustering chromosome \(Ch_2 \) if and only if: 1) \(Ch_1 \) is strictly better than \(Ch_2 \) in at least one of all the measures considered in the fitness function and 2) \(Ch_1 \) is not worse than \(Ch_2 \) in any of the measures considered in the fitness function. Researchers developed different implementation of MOGA e. g. NPGA [25], SPGA [52], PAES [34], NSGA-II [7], CEMOGA [1].

In this paper, we have developed our own MOGA to find out near optimal clusters by optimizing \(H \) and \(S \) values. From the viewpoint of the chromosome encoding scheme MOGA can be categorized in binary coded MOGA and real coded MOGA. In order to keep the mapping between the actual cluster modes and the encoded modes effective, real coded MOGA has been implemented in the work.

Traditional clustering algorithms often fail to detect meaningful clusters because most real-world data sets are characterized by a high-dimensional, inherently sparse data space [21]. However, most popular K-modes clustering algorithm [27], [28] applied on original data sets may converge to non-optimal values. To find a globally optimal clustering solution, GA has been used for clustering. Most of the clustering approaches, whether single objective or multi-objective, are converted to a single objective by weighed sum method [31] or by any other means. However, only a few MOGA clustering approaches have been proposed so far and their experimental results have demonstrated that MOGA clustering approaches significantly outperform existing single objective GA clustering approaches [20], [21]. Earlier work on clustering by the single objective genetic algorithm are [9], [13], [18], [39], [41], [44], [51] and by MOGA are [2], [8], [10], [16], [23], [35], [36], [40], [42], [43], [47], [48], [49]. Among them, fuzzy clustering on categorical data has been applied in [8], [16], [40], [42], [43]. DB Index [5] has been used to compare performance of clustering algorithms. It shows the superiority of global optimization capability of GA over local search algorithm like K-modes.

III. DEFINITIONS

A relation \(R \) and a list of features \(A_1, A_2, ... A_n \) defines a relational schema \(R(A_1, A_2, ... A_n) \), where \(n \) is total number of features.

The domain of \(A_i \) is \(dom(A_i) \), where \(1 \leq i \leq n \).

\(X \) represents a data set comprising a set of tuples. That is \(X = \{ t_1, t_2, ... t_m \} \), where \(m \) is total number of tuples or records.

Each tuple \(t \) is an \(n \)-dimensional attribute vector, i.e., an ordered list of \(n \) values i.e. \(t = [v_{t1}, v_{t2}, ... v_{tn}] \), where \(v_{ti} \in dom(A_i) \), with \(1 \leq i \leq n \). \(v_{ti} \) is \(i^{th} \) value in tuple \(t \), which corresponds to feature \(A_i \). Each tuple belongs to a predefined class, represented by \(v_{tn} \), where \(v_{t1} \in dom(A_n) \) and \(v_{tj} \) or class labels are not known. So, \(t = [v_{t1}, v_{t2}, ... v_{tn}] \).

Formally, the problem is stated as every \(t_i \) of \(X (1 \leq i \leq m) \) is to be clustered into \(K \) number of non-overlapping groups \(\{ C_1, C_2, ... C_K \} \); where \(C_1 \cup C_2 \cup ... C_K = X \), \(C_i \neq \emptyset \), and \(C_i \cap C_j = \emptyset \) for \(i \neq j \) and \(j \leq K \).

The solution of the clustering problem is a set of Cluster Mode (CM) that is \(\{ CM_1, CM_2, ... CM_K \} \). \((n-1) \)-dimensional feature vector, that is \([c_1, c_2, ... c_{n-1}] \) represents \(CM_i \).

Equations (1), (2) and (3) calculate Mod distance per feature between one cluster center and one tuple, two cluster centers and two tuples respectively.

\[
d(CM_i, t_j) = \left[\frac{1}{n} \sum_{l=1}^{n-1} MOD(c_{il}, v_{tl}) \right]^{1/2}
\]

\[
d(CM_i, CM_j) = \left[\frac{1}{n} \sum_{l=1}^{n-1} MOD(c_{il}, c_{jl}) \right]^{1/2}
\]

\[
d(t_i, t_j) = \left[\frac{1}{n} \sum_{l=1}^{n-1} MOD(v_{tl}, v_{tl}) \right]^{1/2}
\]

\(MOD(c_{il}, v_{tl}) \), \(MOD(c_{il}, c_{jl}) \) and \(MOD(v_{tl}, v_{tl}) \) are all equal to 0 if \(c_{il} = v_{tl} \), \(c_{il} = c_{jl} \) and \(v_{tl} = v_{tl} \) otherwise they are equal to 1.

IV. PROPOSED APPROACHES

Original data sets are rearranged to label the last feature as class label and so class label becomes the \(n^{th} \) feature. In clustering, class labels are unknown so we are considering first \((n-1) \) features of data sets.

A. MOGA \((H, S)\)

Flowchart of MOGA \((H, S)\) is provided in figure 1 and described below.
1) **Building initial population:** In most of the literature on GA, fixed number of prospective solutions build initial population (IP). Here, the size of IP is the nearest integer value of 10% of total number of tuples \(m \) in the data set. Although correlation between IP size and the number of instances in the data set are not explicitly known, our experience suggests that IP size guides searching power of GA and therefore its size should increase with the size of the data set. \(K \) number of tuples are randomly chosen to constitute a set of cluster modes \(CM_1 \) of \(K \) clusters. Each chromosome represents a prospective solution, which is a set of cluster modes \(CM\) of \(K \) clusters.

As tuples of data set build cluster modes, it induces faster convergence of MOGA, compared to building chromosomes by randomly choosing categorical feature values from the same feature domain.

2) **Reassign cluster modes:** Using every chromosome, a set of CMs, represented as, \(\{CM_1, CM_2, ..., CM_K\} \) are randomly initialized. K-modes algorithm produces a set of new cluster modes that is \(\{CM_1^*, CM_2^*, ..., CM_K^*\} \), which forms new chromosomes.

3) **Crossover:** Chromosomes generated by K-modes algorithm are input to the crossover. Context insensitivity is an important issue in a grouping task like clustering. Meaning of context insensitivity is “the schemata defined on the genes of the simple chromosome do not convey useful information that could be exploited by the implicit sampling process carried out by a clustering GA” [12]. In their survey paper Hruschka et. al. [26] shows drawback of conventional single point crossover operators often described in the literature considering context sensitivity. We have used a special crossover operator called “Pairwise crossover” described by Frünti in [13] as “The clusters between the two solutions can be paired by searching the ‘nearest’ cluster (in the solution B) for every cluster in the solution A. Crossover is then performed by taking one cluster centroid (by random choice) from each pair of clusters. In this way we try to avoid selecting similar cluster centroids from both parent solutions. The pairing is done in a greedy manner by taking for each cluster in A the nearest available cluster in B. A cluster that has been paired cannot be chosen again, thus the last cluster in A is paired with the only one left in B.” This algorithm does not give the optimal pairing (2-assignment) but it is a reasonably good heuristic for the crossover purpose. Crossover probability \((P_c) \), chosen as 0.9 that is 90% chromosomes undergo with this crossover.

4) **Substitution:** Substitution probability \((P_{sb}) \) of MOGA is 0.1. Child chromosomes are produced by crossover are parent chromosomes of this step. Here \(dom(A_i) \) is categorical. In conventional mutation, any random value from \(dom(A_i) \) can replace \(v_i \) resulting different chromosomes. Considering context sensitivity, instead of replacement of any \(v_i \) of chromosome, substitution is replacing cluster modes by any tuples randomly. Approximately number of substitution \((N_{sb}) \) is \(\lfloor \frac{N_{pre} \times K \times P_{sb}}{2} \rfloor \).

5) **Combination:** At the end of every generation of MOGA some chromosomes are lying on the Pareto optimal front. These chromosomes have survived and these are known as Pareto chromosomes. Chromosomes obtained from previous substitution method (section IV-A4), say \(NC_{pre} \) and previous generation Pareto chromosomes (section IV-A8) of MOGA, say \(PC_{pre} \) are considered to perform in the next generation. For the first generation of GA, \(PC_{pre} \) is zero because of the nonexistence of previous generation.

In general, for \(i^{th} \) generation of MOGA, if \(NC_{pre} \) is \(m \) and \(PC_{pre} \) at the end of \((i-1)^{th} \) generation of MOGA is \(n \) then after combination, number of chromosomes are \(n + m \) or \(PC_{pre} + NC_{pre} \).

6) **Eliminating duplication:** Survived chromosomes from previous generation may be generated again in the present generation of MOGA, resulting multiple copies of the same chromosome. So in this step system is selecting unique chromosomes from the combined chromosome set. One may argue with the requirement of this step. But if we remove this step then population size will be very high at the end of some iterations of GA.

7) **Fitness Computation:** As stated earlier, intra-cluster distance (Homogeneity) \((H) \) and inter-cluster distances (Separa-
Equation 6 using d values of are preserving Pareto chromosomes at every generation (i we are destroying any search we are carrying out during a j tion) ($combined population set (section IV-A8). As pointed out, that (section IV-A5). Selection of Pareto chromosomes are done on chromosomes ((ga) and that is combined to present generation greater than 2 then population are generated using procedure generation of MOGA does not produce Pareto chromosomes odd generation of MOGA or if for any generation previous to build a population of chromosomes close to the Pareto lying on the front of i selected chromosomes. In other words, maximizing after combination, elitism [6], [7] is adhered to. selection of Pareto chromosomes: All chromosomes lying on the front of $max(1/H, S)$ are selected as Pareto chromosomes. This process is not restricting the number of selected chromosomes. In other words, maximizing $1/H$ and S are two objectives of MOGA. As this process is applied after combination, elitism [6], [7] is adhered to.

Building intermediate population: From 2nd generation onwards, for every even generation, selected Pareto chromosomes of previous generation build the population. This helps to build a population of chromosomes close to the Pareto optimal front resulting fast convergence of MOGA. For every odd generation of MOGA or if for any generation previous generation of MOGA does not produce Pareto chromosomes greater than 2 then population are generated using procedure discussed in section IV-A1. This introduces new chromosomes in population and induces diversity in the population. Population size also varies from generation to generation.

From the above discussion, one may get wrong idea that we are destroying any search we are carrying out during a generation and there is no solution evolution. In other words, there is really no time for evolution. But notice that, we are preserving Pareto chromosomes at every generation (i^{th} generation of GA) and that is combined to present generation chromosomes ($i+1^{th}$ generation of GA) during Combination (section IV-A5). Selection of Pareto chromosomes are done on combined population set (section IV-A8). As pointed out, that at every odd generation we generate the population applying the same procedure through which the initial population (section IV-A1) was generated. But is these cases we are not loosing Pareto chromosomes selected by previous even generation because we stores them in a separate storage.

V. Testing and Comparison

K-modes is most popular partition based traditional clustering method [27], [28] for categorical attributes. Algorithm 1 describes steps of the K-modes.

Algorithm 1 Algorithm for K-modes

1: Choose K initial cluster modes $\{CM_1, CM_2, ...CM_K\}$ randomly from m tuples $\{t_1, t_2, ...t_m\}$ of X where $t = [v_1^t, v_2^t, ...v_n^t]$.
2: Assign tuple t_j, $j = 1, 2, ...m$ to cluster C_i, $i \in \{1, 2, ...K\}$ iff $d(CM_i, t_j) < d(CM_p, t_j)$, $p = 1, 2, ...K$, and $i \neq p$. */ Using equation 1 */ Resolve ties arbitrarily.
3: Compute new cluster modes $\{CM_1^*, CM_2^*, ...CM_K^*\}$ as follows:
 $\{CM_1^*, CM_2^*, ...CM_K^*\}$ Mode of t_j
 where $t_j \in C_i$ and $j = 1, 2, ...m$.
4: If $CM_i^* = CM_i$, $i = 1, 2, ...K$ then stop. Otherwise repeat from step 2.

Note that in case the process does not stop at step 4 normally, then it is carried out for a maximum fixed number of iterations. We have taken a maximum fixed number of 100 iterations, which is incidentally same as the number of generations of GA. It is observed that in most of the cases it stops much before maximum fixed number of iterations.

In literature different validity indices are available to measure the quality of clusters. Davies-Bouldin (DB) Index [5] is used here. Equation 7 is calculating DB Index.

$$DB\ Index = 1/K \sum_{i=1, i \neq j}^{K} max((H_i + H_j)/d(CC_i, CC_j))$$
TABLE II
COMPARISON OF PERFORMANCE OF CLUSTERING ALGORITHMS

<table>
<thead>
<tr>
<th>Methods</th>
<th>K-modes</th>
<th>MOGA (H, S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data set</td>
<td>A1</td>
</tr>
<tr>
<td>Soybean(Small)</td>
<td>0.49</td>
<td>277.71</td>
</tr>
<tr>
<td>Tic Tac Toe</td>
<td>0.98</td>
<td>156334.57</td>
</tr>
<tr>
<td>Zoo</td>
<td>0.61</td>
<td>1909.37</td>
</tr>
</tbody>
</table>

Meaning of notations used in this table
B1: Optimized min. H of MOGA (H, S) population, B2: Optimized max. S of MOGA (H, S) population, B3: DB Index of chromosome giving optimized min. H of MOGA (H, S) population, B4: DB Index of chromosome giving optimized max. S of MOGA (H, S) population, B5: Average DB Index of MOGA (H, S) population, B6: Best DB Index of MOGA (H, S) population

VI. Conclusions

In this work, we have implemented a novel real coded hybrid elitist MOGA for K-clustering (MOGA (H, S)). It is known that elitist model of GAs provides the optimal string as the number of iterations increases to infinity [4], [11].

We have achieved one important data mining task of clustering by finding cluster modes. We have considered only categorical features in this work. Continuous features need other type of encoding, as Mod distance per feature measures is not suitable for those types of features. Dealing with missing features values and unseen data are other problem areas. It may be interesting to adapt MOGA based K-clustering for categorical features with unknown number of clusters. Deciding optimum value of k is another research issue. Authors are working in these directions.

REFERENCES

